はやぶさ 2-LIDAR 搭載用レーザ発振器の開発

Development of the Laser Oscillator for HAYABUSA2-LIDAR

加瀬貞二 ¹⁾ , 椎名哲男 ²⁾ , 今奥貴志 ²⁾ , 浅川義博 ¹⁾ , 水野貴秀 ³⁾ T.Kase ¹⁾ , T.Shiina ²⁾ , T.Imaoku ²⁾ , Y.Asakawa ¹⁾ , T.Mizuno ³⁾

日本電気株式会社 ¹⁾ , NEC エンジニアリング ²⁾ NEC Corp. ¹⁾ NEC Engineering Ltd. ²⁾

宇宙航空研究開発機構³⁾ JAXA³⁾

ABSTRACT The small-light-weight laser oscillator has been developed for HAYABUSA2-LIDAR. In the oscillator, the passive-Q-switched laser is applied as a laser-diode-pump source, and the requirement of HAYABUSA2-LIDAR can be achieved. The performance of the developed BBM-module is verified by the vibration and thermal-vacuum test results. This paper shows the configuration of the oscillator and the obtained test results.

1. はじめに

小惑星探査機「はやぶさ」に搭載されたレーザ高度計(LIDAR)は、タッチダウン時の航法センサの他、小惑星「イトカワ」の地形観測や重力測定等の科学観測にも利用された。[1],[2]

はやぶさ 2-LIDAR では、初号機で問題となった熱真空環境下でのレーザ不具合[1]を解決するため、Qスイッチをポッケルスセルからパッシブ方式に変更した。この変更により、共振器をモノリシック化することが可能となる。本研究では、惑星探査機の厳しい重量リソースに対応するため、モノリシック化して小型軽量としたレーザ発振器を開発した。

2. LIDAR 用レーザ発振器の目標性能と開発の概要

はやぶさ 2-LIDAR 用レーザ発振器では、ミッション要求と、初号機や月周回衛星「かぐや」のレーザ高度計(LALT)[3]の実績から、Table -1に示す目標性能を設定した。

Table -1 Specifications of the Laser Oscillator for HAYABUSA2-LIDAR

Wavelength	1,064 nm
Q-switch	Passive
	Cr:YAG
Pulse repetition rate	1 pps
Output Energy	10 mJ
Pulse Width	10 nsec
Beam Divergence	3 mrad
Weight	190g
Lifetime	10,000,000shots
Temperature	
Operation	+20 ~ +40
Storage	-40 ~ +70

これらの性能を実証するため、BBM を製作し、基本性能と耐環境性を評価した。BBM では、ビーム拡がり角と温度変化時の出力エネルギーに課題が残ったが、励起用レーザダイオード(LD)のスタック数を変更し、ロッド断面の均一励起によって改善を図り、BBM-2 で確認した。BBM 及び BBM-2 の評価結果は、EM 設計に反映され、今後 EM で耐環境性を評価し、フライトモデルの製作へ移行する。

3. BBM による耐環境試験

打ち上げ時の振動環境と真空環境への耐性を確認するため、BBM を試作して各評価試験を行った。試作したBBM の外観をFigure -1に示す。

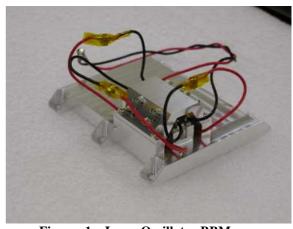


Figure -1 Laser Oscillator BBM

BBM は、はやぶさ 2-LIDAR の設計に先立って試作したため、取付インタフェースと試験条件は初号機と同様とした。BBM の環境試験条件をTable -2に、試験結果をFigure -2とFigure -3にそれぞれ示す。

Table -2 Conditions of the vibration and thermal vacuum test for Laser Oscillator(BBM)

Random wave vibration	
X,Y-axis	11.5Grms
Z-axis	11.6Grms
thermal vacuum	
vacuum	1 x 10 ⁻⁵ torr
Operation Temp	+10 ~ +40
Storage Temp	-40 ~ +50

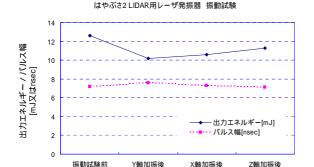


Figure -2 Results of Random wave vibration test (BBM)

計測ポイント

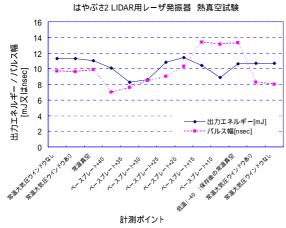


Figure -3 Results of thermal vacuum test (BBM)

振動試験では、出力エネルギーとパルス幅について、目標性能が得られた。熱真空試験では、温度変化時に10 mJを下回ったが、 $1 \times 10^{-5} \text{torr}$ 以下の真空状態でも安定した出力が確認できた。尚、ビーム拡がり角については大気中の常温時で(長軸)3.7 mrad、(短軸)2.6 mrad であり、BBM-2 への課題とした。

4. BBM-2 の製作

BBM-2 は BBM の評価試験結果を踏まえ、励起用 LD のスタック数を 3 段から 4 段に設計を変更した他、構造をフライトモデルの設計に合致させた。BBM-2 の外観とフライトモデルの内部構造図をFigure -4に示す。

励起用 LD の設計変更によって、励起分布が改善され、 出力は 20%増加し、ビーム拡がり角は(長軸)2.6mrad、 (短軸)1.5mrad となり目標性能の3mrad以下を満足した。 BBM-2 のファーフィールドパタンをFigure -5に示す。

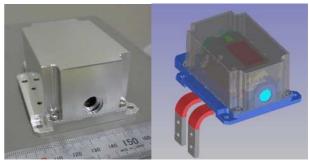


Figure -4 Structure of Laser Oscillator

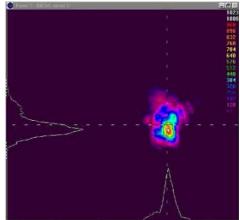


Figure -5 Far field pattern (BBM-2)

5. まとめ

はやぶさ 2-LIDAR 搭載用として、小型軽量のレーザ発振器 BBM を試作評価し、宇宙用レーザに必要な環境条件下で、出力 10mJ 以上、パルス幅 10nsec 以下、繰り返し 1pps の目標性能を得た。これらの結果を基に、EM 設計へ移行した。EM では、フライトモデルと同様に、耐放射線用の Cr をコドープした Nd:YAG ロッドを使用し、熱制御用のヒータやサーモスタットを設置して、耐環境性能を評価する予定である。

文 献

- [1] T. Mizuno, T. Katsuhiko, E. Okumura, M. Nakayama "Evaluation of LIDAR System in Rendezvous and Touchdown Sequence of Hayabusa Mission." Transactions of the Japan Society for Aeronautical and Space Sciences Vol.53 No.179(May,2010)
- [2] 水野貴秀, 奥村英輔, 津野克彦 "MUSES-C 用レーザ航法センサ"第 45 回宇宙科学技術連合講演会, 2A18, 2001
- [3] 田澤誠一,加瀬貞二,荒木博志"かぐや搭載レーザ 高度計(LALT)のレーザ出力変化"第 53 回宇宙科学 技術連合講演会,3D01, 2009