遠隔パーティクルカウンターによる浮遊微粒子観測

Observation of Suspended Particulate Matters using a Remote Particle Counter

大図 章¹、川北 裕司²、岡本 隆太² Akira OHZU¹, Hiroshi KAWAKITA² and Ryuta OKAMOTO²

¹日本原子力研究所・環境科学研究部、²新日本空調株式会社・技術研究所 ¹Japan Atomic Energy Research Institute、²Shin Nippon Air Technologies co., Ltd.

Abstracts: A remote particle counter (RPC) using an imaging lidar technique has been developed for the remote and real-time monitoring of particles suspended in air. It is capable of visualizing as a picture image the laser-induced backscattered lights from particles suspended in a limited region apart (3~200 m) from the observation station with a single laser shot. The number and relative size distribution of the particles can be derived via an image data processing. Also, the picture images of the particles can be taken continuously. The imaging performance of the RPC system was investigated by using various kinds of particles. The behavior of the PSL(polystyrene latex, diameter :~0.5 μ m) particles sprayed into the air was successfully observed on real-time basis at a distance of 5 m from the particles. The results of the indoor experiment are presented.

1.はじめに

従来、大気中に浮遊する微粒子の計測は、空気を 装置内に吸引して空気に含まれる微粒子を光散乱に よって一つずつカウントする方法か、或いはフィル ターで捕集してその質量を計測する方法の二つに大 別される。光散乱式のものは、通常 PSL(ポリスチ レンラテックス)標準粒子で換算された数量、粒径 のデータを短時間で容易に得ることができる。しか しながら、これらの方法は、ともに空気吸引を行う ため計測に最低数分程度の計測時間を必要とする。

近年、浮遊微粒子の大気中での挙動を正確かつ迅 速に調べるために、大気エアロゾル環境計測及びク リーンルームを使用する産業分野より、このような 空気吸引を伴わず非接触かつリアルタイムで浮遊微 粒子を計測する技術に関するニーズが高まっている。 こうした状況の下、遠隔大気中に浮遊する微粒子の 数量及び粒径分布をリアルタイムで計測することを 目的にイメージングライダー技術を用いた遠隔パー ティクルカウンター(RPC)を開発した¹⁾。 この計測 手法により、限られた空間に浮遊するある一定以上 の粒径を持つ微粒子を散乱光により可視化して計測 することができる。これまでに、室内大気であれば 0.5 ミクロン以上の粒径の微粒子を計測でき、さら に装置改造を施すことで 0.3 ミクロンまで計測でき る目途が得られた。

今回、微粒子数量や粒径の計測以外の RPC の用途 として、微粒子の空間浮遊状態の微粒子画像モニタ リング(動画撮影)に関してテストしたのでその結 果について報告する。

2.試験装置

開発した RPC 装置の概略図を Fig.1 に示す。装置 は、主に a)Q スイッチ Nd:YAG レーザー装置(波長: 532nm、パルス幅:~1ns、エネルギー:~50mJ、発 振繰り返し数:30Hz)、b)高速ゲート(シャター時間: ~5ns)付きの高感度イメージインテンシファイアー CCD カメラ、及び e)計測制御装置から構成される。

計測手順は、a)レーザー装置から最初に f)レーザ

ーパルス光を c)凹レンズを通して拡げて 任意の空間に向けて出射する。g)レーザー 伝播領域に浮遊するh)微粒子群は、大気中 を拡がりながら伝播するレーザーパルス に照射されて i)後方散乱光をレーザー出 射地点方向に発生する。その後方散乱光は、 Fig. 1 のようにレーザーの伝播領域から 次々とb)CCD カメラに到達する。レーザー 出射より任意経過時間の後に、短いゲート 時間の高速シャッターが動作すると、装置

から任意の距離離れたレーザー伝播領域 Fig. 1 のある限られた空間からの後方散乱光のみを CCD カ メラに斑点状の画像として計測することができる。 画像中に多数写し出される斑点は微粒子個々からの 散乱光であり、その個数は微粒子の数を表し、その 輝度は微粒子の粒径に依存するので、画像解析によ りその数と粒径を導出することができる。計測でき る最小の微粒子径、限られた空間までの距離、及び 測定空間の容積は、装置の c)凹レンズと d)望遠レン ズの性能、シャッターの露出時間及びレーザー照射 からシャッターの動作までの遅れ時間等に依存する。

このような装置を用いて、測定対象となる測定空間を局所空調管理し、その領域内に PSL 標準粒子を 空気供給器のホース(内径 5mm)から噴霧させて、 その噴霧状態の観察を行った。また、光学物性の異 なる金属、活性炭、化粧品粉末等の様々な微粒子を 発生させてその挙動を観測した。

3. 試験結果

Fig. 2 に粒径約1ミクロンの PSL 標準粒子の噴霧 状態の計測例を示す。画像右上に設置されたホース からこのような微粒子の噴霧状態の連続画像(画面 フレーム:縦18、横24cm)が計測でき、散乱光の輝 度から粒子濃度の空間分布及び時間変化を首尾よく 観測することができた。また、粒径0.5ミクロンの PSL 粒子を用いても同様に観測することができた。 さらに、Fig. 3 に示すように金属光沢色を有する AI 金属微粒子から黒色表面の活性炭まで様々な種類の 微粒子(粒径10~0.5ミクロン)を用いた試験では、 その浮遊状態を鮮明に観測できることがわかった。

Fig. 1 A schematic diagram of the experimental setup

Fig. 2 A picture image of the backscattered lights of PSL particles sprayed into the air.

Fig. 3 A picture image of the backscattered lights of Al fine particles suspended in the air.

4.まとめ

これまでの試験結果より、遠隔大気中に浮遊する 微粒子の数量、粒径分布、空間分布状態の遠隔計測 に目途をつけることができた。今後、本計測装置で 観測される微粒子の種別が特定できる分光手法を取 り入れて装置の高度化を図る予定である。

5. References

1) A. Ohzu et al., Feasibility Study of Imaging Lidar Technique for Remote Particle Counting, Proc. 7th International Congress on Optical Particle Characterization (OPC2004), Aug. 1-5, 2004, Kyoto, Japan.