#### E11 小型ミー散乱ライダーによる雲 ・エアロゾルの連続観測

# Continuous Measurement of Tropospheric Aerosols and Clouds with a Compact Mie Scattering Lidar

## 松井一郎、杉本伸夫

## Ichiro Matsui, Nobuo Sugimoto

## 国立環境研究所

### National Institute for Environmental Studies

Abstract: Vertical profile of tropospheric aerosols and clouds has been observed continuously with a compact Nd:YAG lidar in Tsukuba, Japan. In this paper, We describe the analysis of cloud base height using the lidar data.

#### 1. はじめに

国立環境研究所では、これまで大型ライダー による観測を中心に、つくばにおいてライダー 続的に実施してきた。このなかでは大型ライ た。(Sasano 1996, Appl. Opt.) 大型ライダー による観測は、解析が晴天時に限られること と、大気の一様性を仮定する必要があることな どの制約があったため、全天候型の小型ミー散 例を Fig.2 に示した。 乱ライダー (Compact Mie scattering Lidar) を 開発し、昨年の春より継続的な観測を行ってい について延べる。

#### 2. 装置の概要と観測例

装置はガラスの天窓を備えたコンテナーに収 納されており、雨が降っても観測を継続するこ による対流圏 · 成層圏エアロゾルの観測を継 とができる。装置の構成を Fig.1 に示す。おも な装置の仕様は、光源にNd:YAG レーザーの第 ダーによる掃引測定と、サンフォトメータ、オ 二高調波 532nm、出力 50mJ、繰り返し10HZ、 リオールメータの観測を同時に行い、対流圏エ 受信望遠鏡に直径35cm を使用している。観測 アロゾルの高度分布の定量的な解析を行ってき は、5分間測定10分休止の15分間隔で行って おり、地上から高度約 20km までの雲と高度約 10km までのエアロゾルの分布を昼夜連続で測 定可能である。1ヵ月間の THI 表示による観測

## 3. 雲底高度の解析方法

雲底高度の解析方法は、ライダーで得られた る。本報告では、1996年6月から1997年4月 信号に距離二乗補正を行った相対的後方散乱係 までの測定データより、雲底高度を求めた結果 数Bから高度zでの微分値dB/dzを求め、微分 値が経験的に求めた閾値を越える高度を雲底高

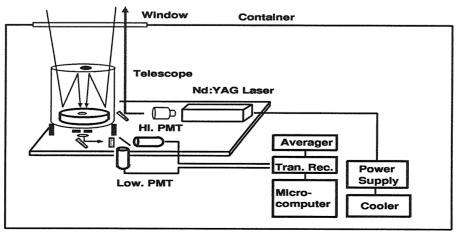



Fig.1 Block diagram of CML.

度とした。比較的薄い雲が多重構造となってい 月は高度 1km 以下に、秋から冬にかけては高 る時は、構造を反映した複数高度で雲底高度と して検出されている。なお、降雨中のデータは 雨滴による信号の減衰が大きく雲底高度は検出 されない。

#### 4. 雲底高度の解析結果

つくばでの 1996 年 6 月から 1997 年 4 月の 5. おわりに 雲底高度の結果を Fig.3 に示す。この図から対 流圏下部での雲底高度は、おおよそ6月から9 学的厚さの定量的な解析を行う計画である。

度 1km から 2km に現れている。8 月は高濃度 のエアロゾル層が雲底高度として検出されてい る可能性があり、今後の検討課題である。対流 圏上部での雲底高度は、夏に高く、冬に低い傾 向がはっきりとわかる。

今後も観測を継続し、エアロゾル ・雲の光

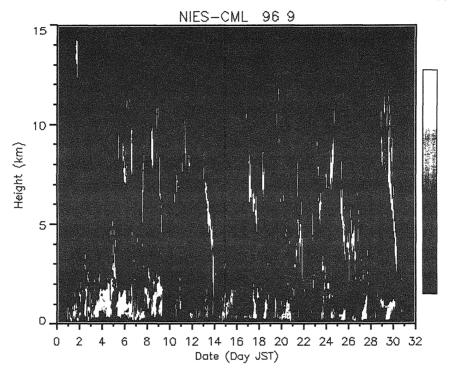



Fig.2 Time-height image of aerosol and cloud density(arb. units).

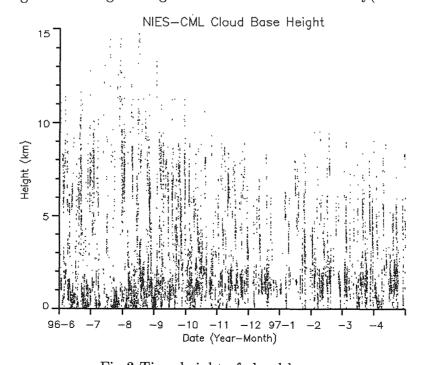



Fig.3 Time-height of cloud base.