B11

回転走査型半導体レーザレーダにおける非接触信号および電力伝送系の試作 The Trials of Signal and Power Transmission System without electrical contact for Laser Diode Radar System of Rotatory scanning

> 秋山貴宏 榎本博之 兼岩武生 池田紘一 Takahiro Akiyama, Hiroyuki Enomoto, Takeo Kaneiwa, Koichi Ikeda 東京理科大学 理工学部

> > Faculty of science & engineering Tokyo Rika Daigaku

abstract

It is possible to transmit the signal and the power to rotating equipment by using rotarytransformer. In the experiment of power transmission, the total transmitted power is 38.1 W with two pair coils of rotarytransformer. The applied input voltages to each coil are 90 [deg.] out of phase. In the experiment of signal transmission, it is possible to transmit signal by frequency of 70[MHz].

半導体レーザレーダを近距離の探査をする高分解能レーダーとして応用する場合、全方位の水平走査を行う必要 がある。送受信装置の回転を可能とするには、回転系である送受信装置と非回転系との間で、信号と電力の伝送が 必要となる。このため、当研究室では信号と電力の伝送法として、ロータリートランスに着目した。ロータリート ランスの構造は、回転系と非回転系が完全に分離されており、電気的にな接点を持たない。このため、回転によっ て電気的なノイズが発生せず、安定なシステムの構築が可能である。本研究目的は、ロータリートランスを用いて、 回転系である送受信装置に非接触による信号と電力の伝送を行い、全方位の水平走査が可能な半導体レーザレー システムを開発することである。

2. ロータリートランス 実験に用いたロータリートランスの構造を図2に 示す。軸とローターは一体となっており、ステー ターを固定した場合でも、軸とローターは、回転が 可能となっている。このコアには、ローター側、ス テータ側の両方にコイルを組み込める巻き線スロッ トが6本ずつ同心円状に存在している。

今回は、そのローターとステーターのスロットを 二つ一組とし、6組のスロットに直径の大きいもの から順番に1~6まで番号を付けた。

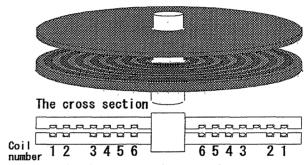
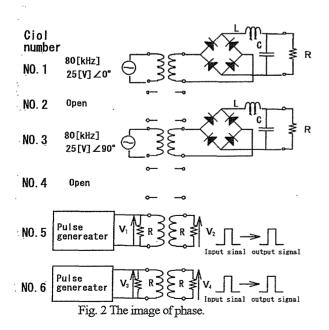
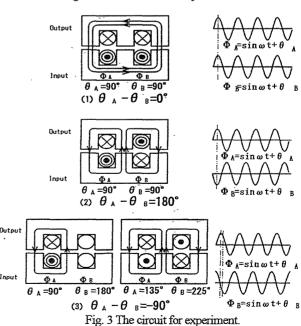




Fig. 1 The structure of rotarytransformer.

3. ロータリートランスによる信号伝送

周波数特性の優れている6番コイル対を用いて信号伝送の実験を行った。改良前、6番コイル対のエナメル線の 直径は0.1[mm]、ローター側対ステーター側のコイルの巻線比は6:3であり、その周波数特性のフラットな帯域は 10[MHz]であった。従って、コイルのインダクタンスを小さくし、周波数特性を向上させるため、直径0.3[mm]のエ

ナメル線を3ターン巻いたコイルに取り替え、終端抵抗を変化させ周波数特性を測定した。このコイル対は受信信号 の伝送用のため、ローター側に100[mV]の信号を入力した。その結果、ステーター側のコイルの終端抵抗を $255[\Omega]$ にした場合に最も高域である70[MHz]までフラットな特性を示し、改良前と比較して帯域は約7倍に広がった。6番 のコイルの信号伝送の周波数特性をFig.4に示す。

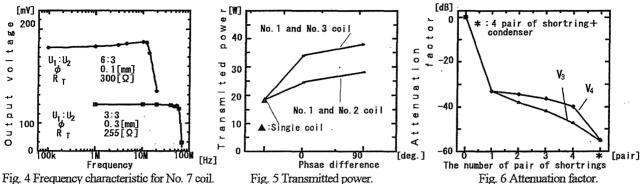


Fig. 4 Frequency characteristic for No. 7 coil.

Fig. 5 Transmitted power.

4. 電力伝送実験

「組のコイル対を用いて電力伝送実験を行った。Fig.3に示すように、二組のコイルのステーター側に80[kHz]、 25[V]の正弦波の交流電源をつないだ。コイル対はエナメル線の直径が0.1[mm]、ステーター対ローターのコイルの 巻き線比が6:6のものを用いた。用いた二組のコイル対は、1番と2番コイル対、1番と3番コイル対である。そし て、二組のコイルの入力電圧の位相をFig. 2に示す様に(a)同位相 (b)逆位相 (c)90[deg.]の位相差 の三つの場 合に変化させた。また、一組のコイル対での伝送も行った。その結果、(a) 同位相 では磁束が飽和し、伝送不可 能であり、(c)90[deg.]の位相差 の場合において最大38.1[W]の伝送が確認された。その結果をFig.5に示す。

5. 信号線への漏洩ノイズの測定

電力と信号の個々の伝送は可能であることが確認された。そこで、Fig.3に示す回路にて、電力と信号の同時伝送 を試みた。その結果、信号伝送用の6番コイル対のローター側とステータ側に振幅0.78[V]、5番コイル対のロー ター側とステーター側に振幅1.59[V]の漏れ電力が確認された。

このため、信号伝送用コイルへの漏れ電力をなくすために、電力伝送用コイル対と信号伝送用コイル対の間に ショートリングを挿入し、漏れ電力の減衰を調べた。この実験においては、1番コイルのみで電力伝送を行い、2 番~5番スロットにはショートリングを挿入した。測定回路図をFig.7に示す。

その結果、信号用コイル対のローター側V3とステータ側V4において、巻き線からの漏れは最大で48.5[dB]減衰し、 電圧としては5.9~5.0[mV]にまで減衰させることが可能であった。この5.9~5.0[mV]の漏洩ノイズは整流時に生じ るスパイクノイズである。従って、この電力の整流時に生じるスパイクノイズを減少させるために、ステーター側 とローター側に0.1[μF]コンデンサを並列に挿入した。その結果、6番コイル対への漏洩ノイズの大きさは2.2[mV] となり、55.3[dB]の減衰となった。漏れ電力の減衰率をFig.6に示すとともに、漏洩ノイズの波形をFig.8に示す。

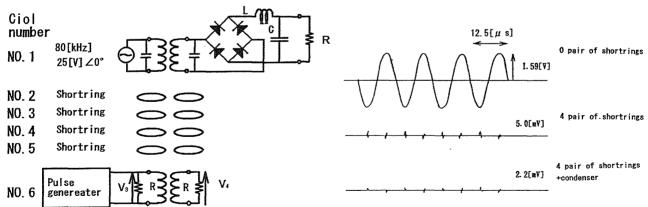


Fig. 7 The circuit for measuring leak noise.

Fig. 8 The wave form of leakage noise in No. 6 coil.

6. まとめ

ロータリートランスを用いて信号と電力の伝送を試みた結果、信号伝送においては6番コイル対を用いることで 70[MHz]までフラットな領域を得るとともに、電力伝送に関しては、1番および3番コイル対を用い、二つの電流の 位相を 90[deg.] ずらすことで 38.1[W]の伝送が可能であった。信号と電力の同時伝送においては、電力波形の信号 線への漏れが存在したが、ショートリングを電力用コイル対と信号用コイル対の間に4組挿入することで、漏れを 48.5[dB]減衰させることが可能であった。また、整流時のスパイクノイズを減少させるためコンデンサをローター とステーターに並列に挿入したところ、漏洩ノイズの減少は 55.3[dB]となり、1.59[v]の漏洩ノイズを最終的に 2.2[mV]にまで押さえることが可能であった。