マルチカラーライダーによる気温の高分解計測技術の開発

Development of a Multi-color Lidar for Atmospheric Temperature Measurement

内野 修、 高島英之、 田端 功 (Osamu Uchino, Hideyuki Takashima, Isao Tabata) 、気象研究所 (Meteorological Research Institute, Tsukuba) 、筑波大学 (Tsukuba University, Tsukuba)

SYNOPSIS: A multi-color lidar system based on three wavelengths of a Nd:YAG laser has been developed for temperature measurements in the middle atmosphere. Temperature profiles above ~ 30 kmaltitude were successfully retrieved from the 532-nm lidar signals. And a preliminary temperature profiles in the lower stratospehre was retrieved from two-wavelength lidar signals at 1064 nm and 355 nm.

1. はじめに

近年化石燃料等の消費増大による地球の温暖化 の問題がクローズアップされてきている。シミュ レーションによると二酸化炭素が現在の値より2 倍になると、地表では1.5-3.5度気温が上 がるが逆に成層圏では気温は低下するものと予想 されている。従って地上気温はもちろん成層 感したがした。 なりングもこのような大気後量成分 の増加による気温のトレンドを早期にとらえる上 で重要である。そこで我々はそのような観測の して、また惑星波等による比較的短い時間の 開発 たいの気温変動を捕らえる目的で科学庁振測 動 技術の開発を行っているのでそのことついて報告 する。

マルチカラーライダー装置
FIG.1に現在開発中の装置のブロックダイ

は低下するものと予想 温はもちろん成層圏気 のような大気微量成分 ドを早期にとらえる上 はそのような観測手段 る比較的短い時間の中 ろ目的で科学庁振興調 大気中からの散乱光は、ナスミスクーデ式の望 遠鏡で集光され、視野絞り、コリメートレンズ、 ダイクロイックミラー、干渉フイルターを通して、 3台の光電子増倍管(PMT)により同時検出が 可能である。PMTからの出力はアンプ、デイス クリを経て光電子計測が行われる。Table 1 にマルチカラーライダーの特性をまとめた。

3. 高度30km以上の気温計調

大気中に打ち出される。

通常エアロゾルの存在しない高度約30km以 上では、1波長のレーザー光により、大気からの レーリー散乱信号と、静水圧と気体の状態方程式 とから気温の計測が可能である。ここでは532

アグラムを示す。マルチカラーレーザー送信部は

Nd: YAGレーザーの3波長1064nm、5

32nm、355nmより成立ち、それぞれのレ ーザー光は誘電体多層膜蒸着の平面鍵により直接

Table 1. Performance of multi-color lidar system.

TRANSMITTER			
WAVELENGTH (NM)	355	532	1064
OUTPUT ENERGY (MJ)	190	195	210
PULSE REP. RATE (Hz)	20	20	20
RECEIVER .			
TELESCOPE DIA. (CM)	50 (F=10.5)		
TRANS. OF IF FILTER FWHM(NM)	0.17 (0.87)	0.50 (0.88)	0.47 (0.76)
Q.E. OF PMT	0.25	0.1	0.0008
PHOTOELECTRON COUNTER			
CHANNEL NUMBER	3		
GATE NUMBER	2048/CH		
MIN. GATE WIDTH (NS)	50		
DISCRI. LEVEL (V)	0 - 2		
MAX.COUNT RATE (MHz)	110 (PERIODIC)		
MEMORY CAPACITY	2 ²⁴ - 1		
MAX. SAMPLING RATE (Hz)	250		

19

Fig.2 Temperature profiles retrieved by the 532-nm lidar signals.

n mを用いて気温の観測を行った。 FIG. 2に1988年11月に観測した気温 の主なプロファイルを示す。ライダーデータがロ ケットゾンデの結果とよく合っていることがわか る。同じ測定精度で観測時間を短くするためには 望遠鏡の口径を2倍以上大きくする必要がある。

4. 高度30KM以下の気温計測

エアロゾルによるミー散乱がレーリー散乱に比 べて無視できなくなる高度30KM以下では、ミ ー散乱の寄与を除去して大気密度を求めその値か ら気温を求める必要がある。レーリー散乱は、波 長のえ⁻⁴に比例し、ミー散乱はえ^{-b}(b=1~2)に比 例するので、レーリー散乱に対するミー散乱の比 はえ^{4-b}となり長波長の方ではミー散乱が、短波 長の方ではレーリー散乱が卓越する。 従って長

Fig.3 Scattering ratio profile at 1064 nm.

波長の方のライダー信号とモデル大気とを用いて ミー散乱を求め、その値をエアロゾルモデルを用 いて短波長の方に変換して、短波長のライダー信 号からミー散乱部分を差し引けば、目的のレーリ ー散乱のみを取り出すことができ、気温が求めら れる。

Fig. 3は1064 nmのライダー信号とモ デル大気とを用いて計算された散乱比のプロフ イルを示す。これとb=1.3を仮定し、355 nmのライダー信号とを組み合わせて得られた気 温のプロフアイルをFig.4に示す。高度10 ~25KMでゾンデとよく一致していることがわ かる。今後はさらに532 nmと1064 nmの 2波長からより妥当なbの値を求めて、気温の測 定褶度を上げること等の工夫が必要であろう。

Fig.4 Temperature profile retrieved by two-wavelength lidar signals at 1064 nm and 355 nm.